Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563704

RESUMO

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

2.
Cell Rep ; 43(4): 113970, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38512868

RESUMO

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.

3.
J Neural Eng ; 21(2)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38537268

RESUMO

Objective. Intracortical microstimulation (ICMS) can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site.Approach. Different microstimulation frequencies were investigatedin vivoon Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging.Main results. Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies.Significance. These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by ICMS and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.


Assuntos
Cálcio , Córtex Visual , Camundongos , Animais , Estimulação Luminosa , Oxiemoglobinas , Neurônios/fisiologia , Estimulação Elétrica/métodos
4.
iScience ; 27(4): 109371, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510113

RESUMO

Cerebral microbleeds (CMBs) are associated with higher risk for various neurological diseases including stroke, dementia, and Alzheimer's disease. However, the understanding of cellular pathology of CMBs, particularly in deep brain regions, remains limited. Utilizing two-photon microscopy and microprism implantation, we longitudinally imaged the impact of CMBs on neuronal and microglial activities across cortical depths in awake mice. A temporary decline in spontaneous neuronal activity occurred throughout cortical layers, followed by recovery within a week. However, significant changes of neuron-neuron activity correlations persisted for weeks. Moreover, microglial contact with neuron soma significantly increased post-microbleeds, indicating an important modulatory role of microglia. Notably, microglial contact, negatively correlated with neuronal firing rate in normal conditions, became uncorrelated after microbleeds, suggesting a decreased neuron-microglia inhibition. These findings reveal chronic alterations in cortical neuronal networks and microglial-neuronal interactions across cortical depths, shedding light on the pathology of CMBs.

5.
bioRxiv ; 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38260671

RESUMO

Objective . Intracortical microstimulation can be an effective method for restoring sensory perception in contemporary brain-machine interfaces. However, the mechanisms underlying better control of neuronal responses remain poorly understood, as well as the relationship between neuronal activity and other concomitant phenomena occurring around the stimulation site. Approach . Different microstimulation frequencies were investigated in vivo on Thy1-GCaMP6s mice using widefield and two-photon imaging to evaluate the evoked excitatory neural responses across multiple spatial scales as well as the induced hemodynamic responses. Specifically, we quantified stimulation-induced neuronal activation and depression in the mouse visual cortex and measured hemodynamic oxyhemoglobin and deoxyhemoglobin signals using mesoscopic-scale widefield imaging. Main results . Our calcium imaging findings revealed a preference for lower-frequency stimulation in driving stronger neuronal activation. A depressive response following the neural activation preferred a slightly higher frequency stimulation compared to the activation. Hemodynamic signals exhibited a comparable spatial spread to neural calcium signals. Oxyhemoglobin concentration around the stimulation site remained elevated during the post-activation (depression) period. Somatic and neuropil calcium responses measured by two-photon microscopy showed similar dependence on stimulation parameters, although the magnitudes measured in soma was greater than in neuropil. Furthermore, higher-frequency stimulation induced a more pronounced activation in soma compared to neuropil, while depression was predominantly induced in soma irrespective of stimulation frequencies. Significance . These results suggest that the mechanism underlying depression differs from activation, requiring ample oxygen supply, and affecting neurons. Our findings provide a novel understanding of evoked excitatory neuronal activity induced by intracortical microstimulation and offer insights into neuro-devices that utilize both activation and depression phenomena to achieve desired neural responses.

6.
Adv Healthc Mater ; 13(3): e2301221, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37916912

RESUMO

Vascular damage and reduced tissue perfusion are expected to majorly contribute to the loss of neurons or neural signals around implanted electrodes. However, there are limited methods of controlling the vascular dynamics in tissues surrounding these implants. This work utilizes conducting polymer poly(ethylenedioxythiophene) and sulfonated silica nanoparticle composite (PEDOT/SNP) to load and release a vasodilator, sodium nitroprusside, to controllably dilate the vasculature around carbon fiber electrodes (CFEs) implanted in the mouse cortex. The vasodilator release is triggered via electrical stimulation and the amount of release increases with increasing electrical pulses. The vascular dynamics are monitored in real-time using two-photon microscopy, with changes in vessel diameters quantified before, during, and after the release of the vasodilator into the tissues. This work observes significant increases in vessel diameters when the vasodilator is electrically triggered to release, and differential effects of the drug release on vessels of different sizes. In conclusion, the use of nanoparticle reservoirs in conducting polymer-based drug delivery platforms enables the controlled delivery of vasodilator into the implant environment, effectively altering the local vascular dynamics on demand. With further optimization, this technology could be a powerful tool to improve the neural electrode-tissue interface and study neurovascular coupling.


Assuntos
Nanopartículas , Vasodilatadores , Camundongos , Animais , Dióxido de Silício , Polímeros/farmacologia , Eletrodos Implantados , Encéfalo/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia
7.
J Cereb Blood Flow Metab ; 42(12): 2255-2269, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35854408

RESUMO

Epinephrine is the principal resuscitation therapy for pediatric cardiac arrest (CA). Clinical data suggest that although epinephrine increases the rate of resuscitation, it fails to improve neurological outcome, possibly secondary to reductions in microvascular flow. We characterized the effect of epinephrine vs. placebo administered at resuscitation from pediatric asphyxial CA on microvascular and macrovascular cortical perfusion assessed using in vivo multiphoton microscopy and laser speckle flowmetry, respectively, and on brain tissue oxygenation (PbO2), behavioral outcomes, and neuropathology in 16-18-day-old rats. Epinephrine-treated rats had a more rapid return of spontaneous circulation and brisk immediate cortical reperfusion during 1-3 min post-CA vs. placebo. However, at the microvascular level, epinephrine-treated rats had penetrating arteriole constriction and increases in both capillary stalling (no-reflow) and cortical capillary transit time 30-60 min post-CA vs. placebo. Placebo-treated rats had increased capillary diameters post-CA. The cortex was hypoxic post-CA in both groups. Epinephrine treatment worsened reference memory performance vs. shams. Hippocampal neuron counts did not differ between groups. Resuscitation with epinephrine enhanced immediate reperfusion but produced microvascular alterations during the first hour post-resuscitation, characterized by vasoconstriction, capillary stasis, prolonged cortical transit time, and absence of compensatory cortical vasodilation. Targeted therapies mitigating the deleterious microvascular effects of epinephrine are needed.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Animais , Ratos , Microscopia , Circulação Cerebrovascular/fisiologia , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/complicações , Epinefrina/farmacologia , Epinefrina/uso terapêutico , Ressuscitação
8.
Adv Nanobiomed Res ; 1(7): 2000092, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34746928

RESUMO

Electrical microstimulation has shown promise in restoring neural deficits in humans. Electrodes coated with materials like the conducting polymer poly(3,4-ethylenedioxythiophene) doped with acid-functionalized carbon nanotubes (PEDOT/CNTs, or PC) exhibit superior charge injection than traditional metals like platinum. However, the stimulation performance of PC remains to be fully characterized. Advanced imaging techniques and transgenic tools allow for real-time observations of neural activity in vivo. Herein, microelectrodes coated with PC and iridium oxide (IrOx) (a commonly used high-charge-injection material) are implanted in GCaMP6s mice and electrical stimulation is applied while imaging neuronal calcium responses. Results show that PC-coated electrodes stimulate more intense and broader GCaMP responses than IrOx. Two-photon microscopy reveals that PC-coated electrodes activate significantly more neuronal soma and neuropil than IrOx-coated electrodes in constant-voltage stimulation and significantly more neuronal soma in constant-current stimulation. Furthermore, with the same injected charge, both materials activate more spatially confined neural elements with shorter pulses than longer pulses, providing a means to tune stimulation selectivity. Finite element analyses reveal that the PC coating creates a denser and nonuniform electric field, increasing the likelihood of activating nearby neural elements. PC coating can significantly improve energy efficiency for electrical stimulation applications.

9.
Biomaterials ; 276: 121060, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419839

RESUMO

Our understanding of biomaterials in the brain have been greatly enhanced by advancements in in vivo imaging technologies such as two-photon microscopy. However, when applied to chronic studies, two-photon microscopy enables high-resolution imaging only in superficial regions due to inflammatory responses introduced by the craniotomy and insertion of foreign biomaterials. Microprisms provide a unique vertical view from brain surface to ~1 mm deep or more (depending on the size of the microprisms) which may break through this limitation on imaging depth. Although microprism has been used in the field of neuroscience, the in vivo foreign body responses to the microprism implant have yet to be fully elucidated. This is of important concern in broader applications of this approach, especially for neuroinflammation-sensitive studies. In this work, we first assessed the activation of microglia/macrophages for 16 weeks after microprism implantation using two-photon microscopy in awake CX3CR1-GFP mice. The imaging window became clear from bleedings after ~2 weeks and the maximum imaging distance (in the horizontal direction) stabilized at around 500 µm after ~5 weeks. We also quantified the microglial morphology from week 3 to week 16 post-implantation. Compared to non-implant controls, microglia near the microprism showed higher cell density, smaller soma, and shorter and less branched processes in the early-chronic phase. After week 5, microglial morphology further than 100 µm from the microprism was generally similar to microglia in the control group. In addition, time-lapse imaging confirmed that microglial processes were surveying normally from week 3, even for microglia as close as 50 µm away. These morphological analyses and dynamic imaging results suggest that microglia around chronically implanted microprism eventually exhibit inactive phenotypes. Next, we examined microglial/macrophage responses following laser induced micro-vessel disruptions as an example application of microprism implantation for neuroinflammation related studies. Through the microprism, we captured microglial/macrophage polarization and migration, as well as blood flow changes after the insult for additional 16 weeks. To our surprise, microglia/macrophage aggregation around the insult site was sustained over the 16-week observation period. This work demonstrates the feasibility of using microprisms for long-term characterizations of inflammatory responses to other injuries including implantable devices at deeper depths than that achievable by conventional two-photon microscopy.


Assuntos
Microglia , Vigília , Animais , Encéfalo , Inflamação/diagnóstico por imagem , Camundongos , Fótons
10.
Cereb Cortex ; 31(9): 4053-4067, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33895810

RESUMO

The BOLD fMRI response in the cortex is often assumed to reflect changes in excitatory neural activity. However, the contribution of inhibitory neurons to BOLD fMRI is unclear. Here, the role of inhibitory and excitatory activity was examined using multimodal approaches: electrophysiological recording, 15.2 T fMRI, optical intrinsic signal imaging, and modeling. Inhibitory and excitatory neuronal activity in the somatosensory cortex were selectively modulated by 20-s optogenetic stimulation of VGAT-ChR2 and CaMKII-ChR2 mice, respectively. Somatosensory stimulation and optogenetic stimulation of excitatory neurons induced positive BOLD responses in the somatosensory network, whereas stimulation of inhibitory neurons produced biphasic responses at the stimulation site, initial positive and later negative BOLD signals, and negative BOLD responses at downstream sites. When the stimulation duration was reduced to 5 s, the hemodynamic response of VGAT-ChR2 mice to optogenetic stimulation was only positive. Lastly, modeling performed from neuronal and hemodynamic data shows that the hemodynamic response function (HRF) of excitatory neurons is similar across different conditions, whereas the HRF of inhibitory neurons is highly sensitive to stimulation frequency and peaks earlier than that of excitatory neurons. Our study provides insights into the neurovascular coupling of excitatory and inhibitory neurons and the interpretation of BOLD fMRI signals.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imageamento por Ressonância Magnética/métodos , Inibição Neural/fisiologia , Neurônios/fisiologia , Oxigênio/sangue , Animais , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Acoplamento Neurovascular , Optogenética , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
11.
Neuroimage ; 225: 117457, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069862

RESUMO

Functional MRI responses are localized to the synaptic sites of evoked inhibitory neurons, but it is unknown whether, or by what mechanisms, these neurons initiate functional hyperemia. Here, the neuronal origins of these hemodynamic responses were investigated by fMRI or local field potential and blood flow measurements during topical application of pharmacological agents when GABAergic granule cells in the rat olfactory bulb were synaptically targeted. First, to examine if postsynaptic activation of these inhibitory neurons was required for neurovascular coupling, we applied an NMDA receptor antagonist during cerebral blood volume-weighted fMRI acquisition and found that responses below the drug application site (up to ~1.5 mm) significantly decreased within ~30 min. Similarly, large decreases in granule cell postsynaptic activities and blood flow responses were observed when AMPA or NMDA receptor antagonists were applied. Second, inhibition of nitric oxide synthase preferentially decreased the initial, fast component of the blood flow response, while inhibitors of astrocyte-specific glutamate transporters and vasoactive intestinal peptide receptors did not decrease blood flow responses. Third, inhibition of GABA release with a presynaptic GABAB receptor agonist caused less reduction of neuronal and blood flow responses compared to the postsynaptic glutamate receptor antagonists. In conclusion, local hyperemia by synaptically-evoked inhibitory neurons was primarily driven by their postsynaptic activities, possibly through NMDA receptor-dependent calcium signaling that was not wholly dependent on nitric oxide.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Neurônios GABAérgicos/fisiologia , Acoplamento Neurovascular/fisiologia , Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Animais , Encéfalo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Estimulação Elétrica , Neuroimagem Funcional , Agonistas dos Receptores de GABA-B , Neurônios GABAérgicos/efeitos dos fármacos , Fluxometria por Laser-Doppler , Imageamento por Ressonância Magnética , Inibição Neural , Acoplamento Neurovascular/efeitos dos fármacos , Óxido Nítrico Sintase/antagonistas & inibidores , Bulbo Olfatório/citologia , Ratos , Receptores de AMPA/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Peptídeo Intestinal Vasoativo/antagonistas & inibidores
12.
Nucl Med Biol ; 92: 85-96, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32471773

RESUMO

INTRODUCTION: Positron emission tomography (PET) using radiolabeled amyloid-binding compounds has advanced the field of Alzheimer's disease (AD) by enabling detection and longitudinal tracking of fibrillar amyloid-ß (Aß) deposits in living people. However, this technique cannot distinguish between Aß deposits in brain parenchyma (amyloid plaques) from those in blood vessels (cerebral amyloid angiopathy, CAA). Development of a PET radioligand capable of selectively detecting CAA would help clarify its contribution to global brain amyloidosis and clinical symptoms in AD and would help to characterize side-effects of anti-Aß immunotherapies in AD patients, such as CAA. METHODS: A candidate CAA-selective compound (1) from a panel of analogues of the amyloid-binding dye Congo red was synthesized. The binding affinity to Aß fibrils and lipophilicity of compound 1 were determined and selectivity for CAA versus parenchymal plaque deposits was assessed ex-vivo and in-vivo in transgenic APP/PS1 mice and in postmortem human brain affected with AD pathology. RESULTS: Compound 1 displays characteristics of Aß binding dyes, such as thioflavin-S, in that it labels both parenchymal Aß plaques and CAA when applied to histological sections from both a transgenic APP/PS1 mouse model of Aß amyloidosis and AD brain. Thus, compound 1 lacks molecular selectivity to distinguish Aß deposits in CAA from those in plaques. However, when administered to living APP/PS1 mice intravenously, compound 1 preferentially labels CAA when assessed using in-vivo two-photon microscopy and ex-vivo histology and autoradiography. CONCLUSION: We hypothesize that selectivity of compound 1 for CAA is attributable to its limited penetration of the blood-brain barrier due to the highly polar nature of the carboxylate moiety, thereby limiting access to parenchymal plaques and promoting selective in-vivo labeling of Aß deposits in the vascular wall (i.e., "delivery selectivity").


Assuntos
Angiopatia Amiloide Cerebral/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Camundongos , Traçadores Radioativos
13.
Adv Biosyst ; 4(6): e1900287, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363792

RESUMO

For brain computer interfaces (BCI), the immune response to implanted electrodes is a major biological cause of device failure. Bioactive coatings such as neural adhesion molecule L1 have been shown to improve the biocompatibility, but are difficult to handle or produce in batches. Here, a synthetic zwitterionic polymer coating, poly(sulfobetaine methacrylate) (PSBMA) is developed for neural implants with the goal of reducing the inflammatory host response. In tests in vitro, the zwitterionic coating inhibits protein adsorption and the attachment of fibroblasts and microglia, and remains stable for at least 4 weeks. In vivo two-photon microscopy on CX3CR1-GFP mice shows that the zwitterionic coating significantly suppresses the microglial encapsulation of neural microelectrodes over a 6 h observation period. Furthermore, the lower microglial encapsulation on zwitterionic polymer-coated microelectrodes is revealed to originate from a reduction in the size but not the number of microglial end feet. This work provides a facile method for coating neural implants with zwitterionic polymers and illustrates the initial interaction between microglia and coated surface at high temporal and spatial resolution.


Assuntos
Materiais Revestidos Biocompatíveis , Metacrilatos , Microglia/metabolismo , Próteses Neurais , Células 3T3 , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Metacrilatos/química , Metacrilatos/farmacologia , Camundongos , Camundongos Transgênicos , Microeletrodos
14.
J Cereb Blood Flow Metab ; 40(7): 1427-1440, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31418628

RESUMO

The impact of different neuronal populations on local cerebral blood flow (CBF) regulation is not well known and insight into these relationships could enhance the interpretation of brain function and dysfunction from brain imaging data. We investigated the role of sub-types of inhibitory neuron activity on the regulation of CBF using optogenetics, laser Doppler flowmetry and different transgenic mouse models (parvalbumin (PV), vasoactive intestinal peptide (VIP), somatostatin (SOM) and nitric oxide synthase (NOS)). Whisker stimulation was used to verify that typical CBF responses were obtained in all mice. Photo-stimulation of SOM-cre and NOS-cre mice produced significant increases in CBF that were similar to whisker responses. In NOS-cre mice, CBF responses scaled with the photo-stimulus pulse duration and frequency. In SOM-cre mice, CBF increases were followed by decreases. In VIP-cre mice, photo-stimulation did not consistently produce significant changes in CBF, while slower increases in CBF that peaked 14-18 s after stimulation onset were observed in PV-cre mice. Control experiments performed in non-expressing regions showed no changes in CBF. These findings suggest that dysfunction in NOS or SOM neurons can have a significant impact on vascular responses that are detected by brain imaging methods like functional magnetic resonance imaging (fMRI).


Assuntos
Circulação Cerebrovascular/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase/metabolismo , Optogenética , Parvalbuminas/metabolismo , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
15.
Front Neurosci ; 13: 759, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417342

RESUMO

Objective: Reanimation of muscles paralyzed by disease states such as spinal cord injury remains a highly sought therapeutic goal of neuroprosthetic research. Optogenetic stimulation of peripheral motor nerves expressing light-sensitive opsins is a promising approach to muscle reanimation that may overcome several drawbacks of traditional methods such as functional electrical stimulation (FES). However, the utility of these methods has only been demonstrated in rodents to date, while translation to clinical practice will likely first require demonstration and refinement of these gene therapy techniques in non-human primates. Approach: Three rhesus macaques were injected intramuscularly with either one or both of two optogenetic constructs (AAV6-hSyn-ChR2-eYFP and/or AAV6-hSyn-Chronos-eYFP) to transduce opsin expression in the corresponding nerves. Neuromuscular junctions were targeted for virus delivery using an electrical stimulating injection technique. Functional opsin expression was periodically evaluated up to 13 weeks post-injection by optically stimulating targeted nerves with a 472 nm fiber-coupled laser while recording electromyographic (EMG) responses. Main Results: One monkey demonstrated functional expression of ChR2 at 8 weeks post-injection in each of two injected muscles, while the second monkey briefly exhibited contractions coupled to optical stimulation in a muscle injected with the Chronos construct at 10 weeks. A third monkey injected only in one muscle with the ChR2 construct showed strong optically coupled contractions at 5 ½ weeks which then disappeared by 9 weeks. EMG responses to optical stimulation of ChR2-transduced nerves demonstrated graded recruitment relative to both stimulus pulse-width and light intensity, and followed stimulus trains up to 16 Hz. In addition, the EMG response to prolonged stimulation showed delayed fatigue over several minutes. Significance: These results demonstrate the feasibility of viral transduction of peripheral motor nerves for functional optical stimulation of motor activity in non-human primates, a variable timeline of opsin expression in a animal model closer to humans, and fundamental EMG response characteristics to optical nerve stimulation. Together, they represent an important step in translating these optogenetic techniques as a clinically viable gene therapy.

16.
IEEE Trans Biomed Eng ; 66(8): 2402-2412, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605086

RESUMO

OBJECTIVE: Neural stimulation with tethered, electrically activated probes is damaging to neural tissue and lacks good spatial selectivity and stable chronic performance. The photoelectric effect, which converts incident light into electric potential and heat, provides an opportunity for a tetherless stimulation method. We propose a novel stimulation paradigm that relies on the photoelectric effect to stimulate neurons around a free-floating, ultrasmall (7-8 µm diameter) carbon fiber probe. METHODS: A two-photon microscope induced photo-stimulation with a near-infrared laser. Chronoamperometry and chronopotentiometry were used to characterize the electrochemical properties of photo-stimulation, while the fluorescence of Rhodamine-B was used to quantify temperature changes. RESULTS: Photo-stimulation caused a local cathodic potential pulse with minimal leakage current. Stimulation induced voltage deflections of 0.05-0.4 V in vitro, varying linearly with the power of the laser source (5-40 mW). Temperature increases in the immediate vicinity of the electrode were limited to 2.5 °C, suggesting that this stimulation modality can be used without inducing heat damage. Successful stimulation was supported in vivo by increased calcium fluorescence in local neurons at stimulation onset in a transgenic GCaMP-3 mouse model. Furthermore, cells activated by photo-stimulation were closer to the electrode than in electrical stimulation under similar conditions, indicating increased spatial precision. CONCLUSION: Our results support the hypothesis that the proposed photoelectric method for neural stimulation is effective. SIGNIFICANCE: Photoelectric stimulation is precise and avoids the need for a potentially destructive tether, making it a promising alternative to electrical stimulation.


Assuntos
Fibra de Carbono/química , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Estimulação Luminosa/instrumentação , Animais , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Eletrodos , Desenho de Equipamento , Camundongos , Camundongos Transgênicos , Imagens de Fantasmas , Processos Fotoquímicos
17.
J Neurosci Res ; 97(5): 620-638, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30585651

RESUMO

Electrical stimulation of the brain has become a mainstay of fundamental neuroscience research and an increasingly prevalent clinical therapy. Despite decades of use in basic neuroscience research and the growing prevalence of neuromodulation therapies, gaps in knowledge regarding activation or inactivation of neural elements over time have limited its ability to adequately interpret evoked downstream responses or fine-tune stimulation parameters to focus on desired responses. In this work, in vivo two-photon microscopy was used to image neuronal calcium activity in layer 2/3 neurons of somatosensory cortex (S1) in male C57BL/6J-Tg(Thy1-GCaMP6s)GP4.3Dkim/J mice during 30 s of continuous electrical stimulation at varying frequencies. We show frequency-dependent differences in spatial and temporal somatic responses during continuous stimulation. Our results elucidate conflicting results from prior studies reporting either dense spherical activation of somas biased toward those near the electrode, or sparse activation of somas at a distance via axons near the electrode. These findings indicate that the neural element specific temporal response local to the stimulating electrode changes as a function of applied charge density and frequency. These temporal responses need to be considered to properly interpret downstream circuit responses or determining mechanisms of action in basic science experiments or clinical therapeutic applications.


Assuntos
Cálcio/metabolismo , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Estimulação Elétrica , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Córtex Somatossensorial/citologia , Córtex Somatossensorial/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(2): 650-659, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584104

RESUMO

Neuritic retraction in the absence of overt neuronal death is a shared feature of normal aging and neurodegenerative disorders, but the intracellular mechanisms modulating this process are not understood. We propose that cumulative distal mitochondrial protein damage results in impaired protein import, leading to mitochondrial dysfunction and focal activation of the canonical apoptosis pathway in neurites. This is a controlled process that may not lead to neuronal death and, thus, we term this phenomenon "neuritosis." Consistent with our hypothesis, we show that in primary cerebrocortical neurons, mitochondrial distance from the soma correlates with increased mitochondrial protein damage, PINK1 accumulation, reactive oxygen species production, and decreased mitochondrial membrane potential and depolarization threshold. Furthermore, we demonstrate that the distance-dependent mitochondrial membrane potential gradient exists in vivo in mice. We demonstrate that impaired distal mitochondria have a lower threshold for focal/nonlethal neuritic caspase-3 activation in normal neurons that is exacerbated in aging, stress, and neurodegenerative conditions, thus delineating a fundamental mechanistic underpinning for synaptic vulnerability.


Assuntos
Apoptose , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Neuritos/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Neuritos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
J Cereb Blood Flow Metab ; 39(5): 913-925, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29192562

RESUMO

Decreased cerebral blood flow (CBF) after cardiac arrest (CA) contributes to secondary ischemic injury in infants and children. We previously reported cortical hypoperfusion with tissue hypoxia early in a pediatric rat model of asphyxial CA. In order to identify specific alterations as potential therapeutic targets to improve cortical hypoperfusion post-CA, we characterize the CBF alterations at the cortical microvascular level in vivo using multiphoton microscopy. We hypothesize that microvascular constriction and disturbances of capillary red blood cell (RBC) flow contribute to cortical hypoperfusion post-CA. After resuscitation from 9 min asphyxial CA, transient dilation of capillaries and venules at 5 min was followed by pial arteriolar constriction at 30 and 60 min (19.6 ± 1.3, 19.3 ± 1.2 µm at 30, 60 min vs. 22.0 ± 1.2 µm at baseline, p < 0.05). At the capillary level, microcirculatory disturbances were highly heterogeneous, with RBC stasis observed in 25.4% of capillaries at 30 min post-CA. Overall, the capillary plasma mean transit time was increased post-CA by 139.7 ± 51.5%, p < 0.05. In conclusion, pial arteriolar constriction, the no-reflow phenomenon and increased plasma transit time were observed post-CA. Our results detail the microvascular disturbances in a pediatric asphyxial CA model and provide a powerful platform for assessing specific vascular-targeted therapies.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Parada Cardíaca/complicações , Microcirculação , Fenômeno de não Refluxo/etiologia , Animais , Encéfalo/fisiopatologia , Parada Cardíaca/fisiopatologia , Masculino , Fenômeno de não Refluxo/fisiopatologia , Ratos Sprague-Dawley , Vasodilatação
20.
Cereb Cortex ; 28(11): 4105-4119, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215693

RESUMO

Hemodynamic signals are routinely used to noninvasively assess brain function in humans and animals. This work examined the contribution of inhibitory neuron activity on hemodynamic responses captured by changes in blood flow, volume and oxygenation in the cortex of lightly anesthetized mice. Because cortical activity is not commonly initiated by inhibitory neurons, experiments were conducted to examine the neuronal activity properties elicited by photo-stimulation. We observed comparable increases in neuronal activity evoked by forelimb and photo-stimulation; however, significantly larger increases in blood flow and volume were produced by photo-stimulation of inhibitory neurons compared with forelimb stimulation. Following blockade of glutamate and GABA-A receptors to reduce postsynaptic activity contributions, neuronal activity was reliably modulated and hemodynamic changes persisted, though slightly reduced. More importantly, photo-stimulation-evoked changes in blood flow and volume were suppressed by 75-80% with the administration of a nitric oxide synthase inhibitor, suggesting that inhibitory neurons regulate blood flow mostly via nitric oxide. Lastly, forelimb and photo-stimulation of excitatory neurons produced local decreases in blood oxygenation, while large increases were generated by photo-stimulation of inhibitory neurons. Estimates of oxygen metabolism suggest that inhibitory neuron activity has a small impact on tissue metabolic load, indicating a mismatch between the metabolic demand and blood flow regulation properties of inhibitory and excitatory neurons.


Assuntos
Membro Anterior/fisiologia , Inibição Neural , Neurônios/fisiologia , Acoplamento Neurovascular , Córtex Somatossensorial/fisiologia , Animais , Channelrhodopsins/genética , Camundongos Transgênicos , Óxido Nítrico Sintase/antagonistas & inibidores , Imagem Óptica , Optogenética , Córtex Somatossensorial/irrigação sanguínea , Córtex Somatossensorial/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...